makalah Hidrokarbon

                              ALKOHOL









DISUSUN OLEH :
Nama
NIM
Arifuddin
1300029211
Alovita Adhis Safitri
1300029214
Baiq Ana Nurfitriana
1300029213
Syawal Abdullah Fatahillah
1300029216
Raditya Mahestica Hayu Kinasih
1300029215
Fitriah Rahmatullah
1300029212


FAKULTAS KESEHATAN MASYARAKAT
UNIVERSITAS AHMAD DAHLAN
YOGYAKARTA
2013




KATA PENGANTAR
            Puji syukur Kami ucapkan atas kehadirat Allah SWT, karena dengan rahmat dan karunia-Nya Kami masih diberi kesempatan untuk menyelesaikan makalah ini. Tidak lupa Kami ucapkan kepada Dosen pembimbing dan teman-teman yang telah memberikan dukungan dalam menyelesaikan makalah ini.
            Dalam makalah ini, akan membahas beberapa hal tentanga Alkohol. Dengan membaca makalah ini semoga teman-teman dapat lebih memahami senyawa apa alcohol itu beserta klasifikasinya dalam kehidupan.
            Penulis menyadari bahwa dalam penulisan makalah ini masih banyak kekurangan, oleh sebab itu penulis sangat mengharapkan kritik dan saran yang membangun. Pada kesempatan ini pula, kami sampaikan terima kasih kepada semua pihak, khususnya teman-teman memberikan saran-sarannya yang sangat berharga. Akhir kata, semoga segala upaya yang kita lakukan dapat memajukan pendidikan di negara kita. Khususnya kampus kita Universitas Ahmad Dahlan (UAD).



                                                                                       Yogyakarta, 4 Desember 2013


Penulis





DAFTAR ISI
Kata Pengantar  …………………………………………………………………….                        I
Daftar Isi  …………………………………………………………………………..             II
BAB I
          Pendahuluan  ………………………………………………………………..             1
A.    Latar Belakang  ………………………………………………………….            1
B.     Rumusan Masalah  ………………………………………………………            1
C.     Tujuan ……………………………………………………………………            1
BAB II
            Pembahasan  ………………………………………………………………..                        2
A.    Dasar Teori………….……………………………………………………            2
B.     Reaksi Alkohol dan fenol …………………………………………………          3
C.     Perbedaan Alkohol dan Fenol……………………………………………...         4
D.    Sifat Keasaman Pada Alkohol Dan Fenol ……………………………………….     4
E.     Reaksi Fenol Dan Alkohol Dengan Asam Karboksilat ……………………         6
F.      Oksidasi Pada Alkohol …………………………………………………….         8
BAB III
A.    Kesempulan  …………………………………………………………………          9
B.     Saran  ………………………………………………………………………...          9
Text Box: IIDaftar Pustaka  ……………………………………………………………………….         III




BAB I
PENDAHULUAN
A.    LATAR BELAKANG
Dalam kehidupan sehari-hari hampir semua yang kita gunakan atau kenakandalam menjalankan aktifitas adalah hasil olahan dari senyawa hidrokarbon. Seperti pakaian, alat masak, alat tulis tempat pensil, dan sebagainya.
Dalam bidang kimia, hidrokarbon adalah sebuah senyawa yang terdiri dari senyawa  karbon yang hanya tersusun dari atom hidrogen (H) dan atom karbon (C). Seluruh hidrokarbon memiliki rantai karbon dan atom-atom hidrogen yang berikatan dengan rantai tersebut. Senyawa hidrokarbon merupakan senyawa karbon yang paling sederhana. Dalam kehidupan sehari-hari banyak kita temui senyawa hidrokarbon, misalnya minyak tanah, bensin, gas alam, plastik dan lain-lain.
Sampai saat ini terdapat lebih kurang dua juta senyawa hidrokarbon.sifat senyawa-senyawa hidrokarbon ditentukan oleh struktur dan jenis ikatan koevalen antar atom karbon.oleh karena itu,untuk memudahkan mempelajari senyawa hidrokarbon yang begitu banyak, para ahli melakukan pergolongan hidrokarbon berdasarkan strukturnya,dan jenis ikatan koevalen antar atom karbon dalam molekulnya.
Sejalan dengan dengan kemajuan industri dan tegnologi, kebutuhan manusia akan sarana  yang memadai makin bertambah. Salah satu sarana itu ialah bahan kimia,baik berupa unsur, senyawa ataupum campuran. Kita telah mengetahui bahwa terdapat 92 jenis unsur di alam. Kebayakan dari unsur tersebut terdapat sebagai persenyawaan. Hanya unsur-unsur yang kurang reaktif saja yang belum ditemukan dalam keadaan bebas. Tetapi, berkat kemajuan Iptek kita telah dapat membebaskan unsur-unsur dari persenyawaan.
Begitu banyak manfaat yang diberikan oleh produk - produk dari hidrokarbon, namun  masih ada beberapa orang yang belum  mengetahui produk – produk yang dihasilkan dari hidrokarbon. Untuk itu dalam makalah ini saya akan membahas mengenai produk – produk yang dihasilkan oleh hidrokarbon.

B.     RUMUSAN  MASALAH
  1. Apakah senyawa hidrokarbon ?
  2. Apakah manfaat senyawa hidrokarbon
  3.  Apa itu alkana, alkena, dan alkuna?

BAB II
PEMBAHASAN
HIDROKARBON
A.     Definisi Hidrokarbon
Hidrokarbon adalah sebuah senyawa yang terdiri dari unsur karbon (C) dan hidrogen (H). (model atom karbon dan hidrogen ditampilkan)
Salah satu contoh senyawa hidrokarbon yang sederhana adalah metana, dengan rumus struktur CH4. (model struktur senyawa metana)
Dalam kimia karbon adalah penting bagi kita untuk dapat menuliskan rumus molekul dan rumus struktur. Rumus molekul menyatakan jumlah atom setiap unsur yang ada dalam suatu molekul. Sedangkan rumus struktur menggambarkan bagaimana atom-atom itu terikat satu sama lain. (tampilkan sebagai contoh rumus molekul CH4 dan rumus struktur CH4).
Description: tana, etena dan etuna
Adanya unsur karbon dan hidrogen dalam senyawa hidrokarbon dapat diidentifikasi melalui percobaan sederhana. Percobaan sederhana ini dapat dilakukan di laboratorium sekolah maupun di rumah Anda. Salah satu metodenya adalah dengan menggunakan lilin (C20H42) yang direaksikan dengan oksigen dari udara (dibakar), hasil pembakaran lilin dilewatkan ke dalam larutan Ca(OH)2 1%, seperti ditunjukkan pada Gambar 1.
Description: Identifikasi karbon dan hidrogen menggunakan metode pembakaran lilin
Gambar 1. Identifikasi karbon dan hidrogen menggunakan metode pembakaran lilin.
Bagaimana mengidentifikasi adanya unsur karbon dan hidrogen dalam senyawa hidrokarbon atau senyawa organik? Untuk dapat menjawab ini, Anda harus memahami dulu reaksi yang terjadi.

Ketika lilin terbakar terjadi reaksi antara lilin dan oksigen dari udara. Jika pembakarannya sempurna, terjadi reaksi:

2C20H42(s) + 61O2(g) → 40CO2(g) + 42H2O(g)

Gas CO2 dan uap air hasil pembakaran akan mengalir melalui saluran menuju larutan Ca(OH)2 . Pada saat menuju larutan Ca(OH)2 , terjadi pendinginan oleh udara sehingga uap air hasil reaksi akan mencair. Hal ini dibuktikan dengan adanya tetesan-tetesan air yang menempel pada saluran. Oleh karena titik embun gas CO2 sangat rendah maka akan tetap sebagai gas dan bereaksi dengan larutan Ca(OH)2 . Bukti adanya CO2 ditunjukkan oleh larutan menjadi keruh atau terbentuk endapan putih dari CaCO3 (perhatikan Gambar 1). Persamaan reaksinya:

CO2(g) + Ca(OH)2(aq) → CaCO3(s) + H2O(l)

B.     Penggolongan Hidrokarbon
Hidrokarbon terbagi menjadi dua kelompok utama yaitu hidrokarbon alifatik dan hidrokarbon aromatik. Yang termasuk hidrokarbon alifatik adalah hidrokarbon yang memiliki rantai lurus, rantai bercabang atau rantai melingkar. Sedangkan untuk hidrokarbon aromatik, rantainya mengandung cincin atom karbon yang sangat stabil. (model hidrokarbon alifatik dan aromatik)

C.    Rumus Molekul
  1. Alkana
Hidrokarbon jenuh yang paling sederhana merupakan suatu deret senyawa yang memenuhi rumus umum CnH2n+2 dan dinamakan alkana atau parafin. Suku pertama sampai dengan 10 senyawa alkana dapat diperoleh dengan mensubstitusikan harga n  (n menyatakan jumlah atom karbon yang terdapat pada senyawa hidrokarbon) dan ditampilkan dalam tabel berikut.




Tabel Suku pertama sampai dengan 10 senyawa alkana
Suku ke
Bn
Rumus Molekul
Nama
1
11
CH4
metana
2
22
C2H6
Etana
3
33
C3H8
Propane
4
44
C4H10
Butane
5
55
C5H12
Pentane
6
66
C6H14
Heksana
7
77
C7H16
Heptane
8
88
C8H18
Oktana
9
99
C9H20
Nonana
10
010
C10H22
Dekana

Pemberian nama alkana dilakukan dengan mengganti awalan alk- dengan suku kata lain berdasarkan pada harga n. Untuk n = 1 sampai n = 4, awalan alk- berturut-turut diganti dengan met-, et-, prop- dan but-. Sedangkan untuk jumlah atom karbon lima sampai dengan sepuluh, digunakan awalan angka latin; pent- untuk 5, heks- untuk 6, hept- untuk 7, okt- untuk 8, non- untuk 9, dan dek- untuk 10.
a. Oksidasi
Alkana sukar dioksidasi oleh oksidator lemah atau agak kuat seperti KMNO4, tetapi mudah dioksidasi oleh oksigen dari udara bila dibakar. Oksidasi yang cepat dengan oksingen yang akan mengeluarkan panas dan cahaya disebut pembakaran atau combustion
Hasil oksidasi sempurna dari alkana adalah gas karbon dioksida dan sejumlah air. Sebelum terbentuknya produk akhir oksidasi berupa COdan HO, terlebih dahulu terbentuk alkohol, aldehid dan karboksilat.
Alkana terbakar dalam keadaan oksigen berlebihan dan reaksi ini menghasilkan sejumlah kalor (eksoterm)
CH4 + 2O2 → CO­2 + 2H2 + 212,8 kkal/mol
C4H10 + 2O2 → CO­2 + H2O + 688,0 kkal/mol
Reaksi pembakaran ini merupakan dasar penggunaan hidrokarbon sebagai penghasil kalor (gas alam dan minyak pemanas) dan tenaga (bensin), jika oksigen tidak mencukupi untuk berlangsungnya reaksi yang sempurna, maka pembakaran tidak sempurna terjadi. Dalam hal ini, karbon pada hidrokarbon teroksidasi hanya sampai pada tingkat karbon monoksida atau bahkan hanya sampai karbon saja.
2CH4 + 3O2 → 2CO­ + 4H2O
CH4 + O2 → C + 2H2O
Penumpukan karbon monoksida pada knalpot dan karbon pada piston mesin kendaraan bermotor adalah contoh dampak dari pembakaran yang tidak sempurna. Reaksi pembakaran tak sempurna kadang-kadang dilakukan, misalnya dalam pembuatan carbon black, misalnya jelaga untuk pewarna pada tinta.
b. Halogenasi
 Alkana dapat bereaksi dengan halogen (F2, Cl2, Br2, I2 ) menghasilkan alkil halida.
Reaksi dari alkana dengan unsur-unsur halogen disebut reaksi halogenasi. Reaksi ini akan menghasilkan senyawa alkil halida, dimana atom hidrogen dari alkana akan disubstitusi oleh halogen sehingga reaksi ini bisa disebut reaksi substitusi.
Halogenasi biasanya menggunakan klor dan brom sehingga disebut juga klorinasi dan brominasi. Halongen lain, fluor bereaksi secara eksplosif dengan senyawa organik sedangkan iodium tak cukup reaktif untuk dapat bereaksi dengan alkana.
Laju pergantian atom H sebagai berikut H3 > H2 > H1. Kereaktifan halogen dalam mensubtitusi H yakni fluorin > klorin > brom > iodin.
Reaksi antara alkana dengan fluorin menimbulkan ledakan (eksplosif) bahkan pada suhu dingin dan ruang gelap.
Description: clip_image003
Jika campuran alkana dan gas klor disimpan pada suhu rendah dalam keadaan gelap, reaksi tidak berlangsung. Jika campuran tersebut dalam kondisi suhu tinggi atau di bawah sinar UV, maka akan terjadi reaksi yang eksoterm. Reaksi kimia dengan bantuan cahaya disebut reaksi fitokimia.
Dalam reaksi klorinasi, satu atau lebih bahkan semua atom hidrogen diganti oleh atom halogen. Contoh reaksi halogen dan klorinasi secara umum digambarkan sebagai berikut:
Description: clip_image005

Untuk menjelaskan keadaan ini, kita harus membicarakan mekanisme reaksinya. Gambaran yang rinci bagaimana ikatan dipecah dan dibuat menjadi reaktan dan berubah menjadi hasil reaksi.
Langkah pertama dalam halogenasi adalah terbelahnya molekul halogen menjadi dua partikel netral yang dinamakan radikal bebas atau radikal. Suatu radikal adalah sebuah atom atau kumpulan atom yang mengandung satu atau lebih elektron yang tidak mempunyai pasangan. Radikal klor adalah atom yang klor yang netral, berarti atom klor yang tidak mempunyai muatan positif atau negatif.
Description: clip_image007
Pembelahan dari molekul Cl2 atau Br2 menjadi radikal memerlukan energi sebesar 58 Kcal/mol untuk Cl2 dan 46 kcal/mol untuk Br2. Energi yang didapat dari cahaya atau panas ini, diserap oleh halongen dan akan merupakan reaksi permulaan yang disebut langkah permulaan.
Tahap kedua langkah penggadaan dimana radikal klor bertumbukan dengan molekul metan, radikal ini akan memindahkan atom atom hidrongen (H ) kemudian menghasilkan H-Cl dan sebuah radikal baru, radikal metil ( CH3).
Langkah I dari siklus penggadaan
Description: clip_image009
Radikal bebas metil sebaliknya dapat bertumbukan dengan molekul (Cl2) untuk membedakan atom khlor dalam langkah penggandaan lainnya.
Langkah 2 dari siklus penggadaan
Description: clip_image011

Langka ketiga Reaksi Penggabungan Akhir. Reaksi rantai radikal bebas berjalan terus sampai semua reaktan terpakai atau sampai radikalnya dimusnahkan. Reaksi dimana radikal dimusnahkan disebut langkah akhir. Langkah akhir akan memutuskan rantai dengan jalan mengambil sebuah radikal setelah rantai putus. Siklus penggandaan akan berhenti dan tak berbentuk lagi reaksi.
Suatu cara untuk memusnahkan radikal adalah dengan menggabungkan dua buah radikal untuk membentuk non radikal yang stabil dengan reaksi yang disebut reaksi penggabungan (coupling reaction). Reaksi penggabungan dapat terjadi bila dua buah radikal bertumbukan
Description: clip_image013
Radikal lainnya juga dapat bergabung untuk mengakhiri rangkaian reaksi tersebut. Misalnya CH3dapat bergabung dengan Cl menghasilkan CH3Cl
Suatu masalah dengan radikal bebas adalah terbentuknya hasil campuran. Contohnya ketika reaksi khlorinasi metana berlangsung, konsentrasi dari metana akan berkurang sedangkan klorometan bertambah. Sehingga ada kemungkinan besar bahwa radikal klor akan bertumbukkan dengan molekul klormetan, bukannya dengan molekul metan.
Jika halogen berlebihan, reaksi berlanjut dan memberikan hasil-hasil yang mengandung banyak halogen berupa diklorometana, trikloroetana dan tetraklorometana
Description: clip_image015
Keadaan reaksi dan perbandingan antara klor dan metana dapat diatur untuk mendapatkan hasil yang diinginkan.
Pada alkana rantai panjang, hasil reaksinya menjadi semakin rumit karena campuran dari hasil reaksi berupa isomer-isomer semakin banyak. Misalnya pada klorinasi propana
Description: clip_image017

Bila alkana lebih tinggi dihalogenasi, campuran hasil reaksi menjadi rumit, pemurnian atau pemisahan dari isomer-isomer sulit dilakukan. Dengan demikian halogenasi tidak bermanfaat lagi dalam sintesis alkil halida. Akan tetapi pada sikloalkana tak bersubtitusi dimana semua atom hidrogennya setara, hasil murni dapat diperoleh. Karena sifatnya yang berulang terus reaksi semacam ini disebut reaksi rantai radikal bebas.
c.Sulfonasi Alkana
Sulfonasi merupakan reaksi antara suatu senyawa dengan asam sulfat. Reaksi antara alkana dengan asam sulfat berasap (oleum) menghasilkan asam alkana sulfonat. dalam reaksi terjadi pergantian satu atom H oleh gugus –SO3H. Laju reaksi sulfonasi H3 > H2 > H1.
Contoh
Description: clip_image019
d. Nitrasi
Reaksi nitrasi analog dengan sulfonasi, berjalan dengan mudah jika terdapat karbon tertier, jika alkananya rantai lurus reaksinya sangat lambat.
Description: clip_image021

5. Pirolisis (Cracking)
Proses pirolisis atau cracking adalah proses pemecahan alkana dengan jalan pemanasan pada temperatur tinggi, sekitar 10000 C tanpa oksigen, akan dihasilkan alkana dengan rantai karbon lebih pendek
Description: clip_image023
Proses pirolisis dari metana secara industri dipergunakan dalam pembuatan karbon-black. Proses pirolisa juga dipergunakan untuk memperbaiki struktur bahan bakar minyak, yaitu, berfungsi untuk menaikkan bilangan oktannya dan mendapatkan senyawa alkena yang dipergunakan sebagai pembuatan plastik. Cracking biasanya dilakukan pada tekanan tinggi dengan penambahan suatu katalis (tanah liat aluminium silikat).

2.      Alkena
Tergolong hidrokarbon tidak jenuh yang mengandung satu ikatan rangkap dua antara dua atom C yang berurutan, Alkena mempunyai 2 atom H lebih sedikit dari alkana. Oleh karena itu rumus umumnya menjadi CnH2n+2-2H = CnH2n.

Tabel Lima suku pertama alkena
Suku ke
n
Rumus Molekul
Nama
1
2
CH2 = CH2
Etena
2
3
CH2 = CH - CH3
Propena
3
4
CH2 = CH - CH2 - CH3
1-Butena
4
5
CH2 = CH - CH2 - CH2 - CH3
1-Pentena
5
6
CH2 = CH - CH2 - CH2 -CH2 - CH3
1-Heksena
 (tampilkan deret senyawa alkena seperti pada table di atas)

3.      Alkuna
Alkuna merupakan deret senyawa hidrokarbon tidak jenuh yang dalam tiap molekulnya mengandung satu ikatan rangkap 3 diantara dua atom C yang berurutan. Untuk membentuk ikatan rangkap 3 atau 3 ikatan kovalen diperlukan 6 elektron, sehingga tinggal satu elektron pada tiap-tiap atom C tersisa untuk mengikat atom H. Jumlah atom H yang dapat diikat berkurang dua, sehingga rumus umumnya menjadi
CnH2n+2 - 4H = CnH2n-2
(tampilkan deret senyawa alkuna)
Ciri-ciri alkuna
·         Hidrokarbon tak jenuh mempunyai ikatan rangkap tiga
·         Sifat-sifatnya menyerupai alkena, tetapi lebih reaktif
·         Pembuatan : CaC2 + H2O → C2H2 + Ca(OH)2
·         Sifat-sifat :
-         Suatu senyawaan endoterm, maka mudah meledak
-         Suatu gas, tak berwarna, baunya khas
·         Penggunaan etuna :
-         Pada pengelasan : dibakar dengan O2 memberi suhu yang tinggi (± 3000oC), dipakai untuk mengelas besi dan baja
-         Untuk penerangan
-         Untuk sintesis senyawa lain

Sifat Fisika Alkuna
Sifat fisis alkuna, yakni titik didih mirip dengan alkana dan alkena. Semakin tinggi suhu alkena, titik didih semakin besar. Pada suhu kamar, tiga suhu pertama berwujud gas, suhu berikutnya berwujud cair sedangkan pada suhu yang tinggi berwujud padat.

Sifat Kimia Alkuna
Adanya ikatan rangkap tiga yang dimiliki alkuna memungkinkan terjadinya reaksi adisi, polimerisasi, substitusi dan pembakaran
1.    reaksi adisi pada alkuna
* Reaksi alkuna dengan halogen (halogenisasi)
* Reaksi alkuna dengan hidrogen halida
* Reaksi alkuna dengan hidrogen
2. Polimerisasi alkuna
3. Substitusi alkuna Substitusi (pengantian) pada alkuna dilakukan dengan menggantikan satu atom H yang terikat pada C=C di ujung rantai dengan atom lain.
4. Pembakaran alkuna Pembakaran alkuna (reaksi alkuna dengan oksigen) akan menghasilkan CO2 dan H2O.
2CH=CH + 5 O2 à 4CO2 + 2H2O

D.    Tatanama
Tata cara pemberian nama senyawa hidrokarbon berdasarkan standar yang diterbitkan IUPAC (International Union of Pure and Applied Chemistry) dijelaskan sebagai berikut.
  1. Rantai karbon berurutan yang terpanjang dalam suatu molekul ditentukan sebagai rantai induk (rantai terpanjang tidak selalu berbentuk lurus, kadang bercabang). Carilah namanya pada tabel suku pertama sampai dengan 10 senyawa alkana dan letakkan di bagian belakang.
  2. Hidrokarbon bercabang diberi nama sebagai turunan rantai lurus di mana satu atau beberapa atom hidrogen diganti dengan pecahan alkana. Pecahan alkana ini disebut gugus alkil, biasa diberi tanda -R (dari kata radikal), dan mempunyai rumus umum -CnH2n+1
Dengan mengganti n dengan angka-angka diperoleh suku-sukunya seperti terlihat pada tabel berikut. Letakkan nama gugus cabang ini di depan nama rantai induk.

Tabel Beberapa gugus alkil
n
-CnH2n+1
Rumus struktur terinci
Rumus struktur sederhana
Nama
1
-CH3
  H
|
- C - H
|
H
-CH3
metil
2
-C2H5
  HH
||
- C - C - H
|     |
   H  H
-CH2-CH3
etil
3
-C3H7
   H  H   H
| |     |
- C - C - C- H
|||
   H H  H
-CH2-CH2-CH3
propil
4
-C4H9
   H  H  H   H
||||
- C - C - C - C - H
| |  |     |
   H  H    H    H
-CH2-CH2-CH2-CH3
butil

  1. Untuk menentukan cabang pada rantai induk, rantai induk itu diberi nomor dari kiri atau dari kanan sehingga cabang pertama mempunyai nomor terkecil.
contoh :
H   H     HHH
|      |       |||
H - C5 - C4 - C3 - C2 - C1 - H
||       |      |       |
H    H    H     H     H


a.     Menurut aturan nomor satu, rantai C terpanjang 5, jadi menurut tabel ini, namanya pentana dan kita letakkan di bagian belakang.
b.    Cabangnya adalah metil
c.     Letak cabang itu pada atom C nomor dua dari kanan (karena kalau dari kiri menjadi
nomor 4).

4.      Kadang-kadang terdapat lebih dari satu cabang. Jika cabang-cabang itu sama, namanya tidak perlu disebut dua kali. Cukup diberi awalan di- , kalau 3 cabang sama awalannya tri- , tetra untuk 4 cabang yang sama dan seterusnya. Ingat setiap cabang diberi satu nomor, tidak peduli cabangnya sama atau beda.

contoh :
H  H         HH
        |   ||         |
H-   1C   -   2C   -    3C -    4C - H     2,3-dimetilbutana
|          |             ||
H    H-C-H   H-C-HH
                  |              |
                  HH
a. Rantai terpanjangnya 4, jadi dinamakan butana
b. Cabangnya adalah metil dan ada dua
c. Letak cabangnya pada atom C nomor 2 dan nomor 3.
Jika cabang-cabang itu berbeda, maka urutan menyebutnya adalah menurut urutan abjad huruf pertamanya, cabang etil disebut dulu dari cabang metil.(tampilkan contoh senyawa hidrokarbon beserta penamaannya seperti pada gambar di atas)

E.     Cara merangkai
Bagaimana kita dapat memperoleh molekul alkana yang lebih panjang dari molekul yang lebih pendek? Gantilah salah satu atom H dari metana dengan gugus -CH3 maka akan kita peroleh molekul etana. Demikian juga jika kita mengganti salah satu atom H dari etana dengan gugus -CH3 akan kita peroleh propana yang rantai karbonnya lebih panjang satu lagi.
CH3-H diganti dengan -CH3 diperoleh CH3-CH3
CH3-CH2-H diganti dengan -CH3 diperoleh CH3-CH2-CH3

Anda boleh memilih salah satu atom H yang mana saja untuk diganti dengan gugus -CH3 dan anda akan memperoleh hasil penggantian yang sama. Kita mengatakan bahwa setiap atom H terikat secara ekuivalen dengan atom karbon. Tetapi bila sekarang anda akan mengganti salah satu atom H dari propana dengan gugus -CH3 anda akan memperoleh lebih dari satu macam hasil, perhatikanlah:

CH3-CH2-CH2-H diganti dengan -CH3 diperoleh CH3-CH2-CH2-CH3  n-butana


HCH3
||
CH3-CH-CH3 diganti dengan -CH3 diperoleh CH3-CH-CH3
isobutana
Jelas terlihat bahwa kedua hasil penggantian di atas berbeda, kita mengatakan atom H tidak lagi terikat secara ekuivalen. Atom C yang terikat dengan satu atom C dan 3 atom H disebut atom C primer, sedang atom C yang terikat dengan dua atom C den dua atom H disebut atom C sekunder. Kedua hasil penggantian itu mempunyai rumus struktur yang berbeda tetapi rumus molekulnya sama, peristiwa ini disebut isomer. (tampilkan model cara merangkai seperti pada uraian di atas).
F.     Contoh senyawa yang mengandung hidrokarbon
Secara umum, komposisi minyak bumi dapat dilihat pada tabel berikut :
Tabel 1. Komposisi Elemental Minyak Bumi
Komposisi
Persen
Karbon (C)
84 – 87
Hidrogen (H)
11 – 14
Sulfur (S)
0 – 3
Nitrogen (N)
0 – 1
Oksigen (O)
0 – 2

Berdasarkan kandungan senyawanya, minyak bumi dapat dibagi menjadi golongan hidrokarbon dan non-hidrokarbon serta senyawa-senyawa logam.
 1. Hidrokarbon
Golongan hidrokarbon-hidrokarbon yang utama adalah parafin, olefin, naften, dan aromat.
1.1. Parafin
adalah kelompok senyawa hidrokarbon jenuh berantai lurus (alkana), CnH2n+2. Contohnya adalah metana (CH4), etana (C2H6), n-butana (C4H10), isobutana (2-metil propana, C4H10), isopentana (2-metilbutana, C5H12), dan isooktana (2,2,4-trimetil pentana, C8H18).

1.2. Olefin
Olefin adalah kelompok senyawa hidrokarbon tidak jenuh, CnH2n. Contohnya etilena (C2H4), propena (C3H6), dan butena (C4H8).
1.3. Naftena
Naftena adalah senyawa hidrokarbon jenuh yang membentuk struktur cincin dengan rumus molekul CnH2n. Contohnya adalah siklopentana (C5H10), metilsiklopentana (C6H12) dan sikloheksana (C6H12).
1.4. Aromatik
Aromatik adalah hidrokarbon-hidrokarbon tak jenuh yang berintikan atom-atom karbon yang membentuk cincin benzen (C6H6). Contohnya benzen (C6H6), metilbenzen (C7H8), dan naftalena (C10H8).

2. Non Hidrokarbon
Selain senyawa-senyawa yang tersusun dari atom-atom karbon dan hidrogen, di dalam minyak bumi ditemukan juga senyawa non hidrokarbon seperti belerang, nitrogen, oksigen, vanadium, nikel dan natrium yang terikat pada rantai atau cincin hidrokarbon.
2.1. Belerang
Belerang terdapat dalam bentuk hidrogen sulfida (H2S), belerang bebas (S), merkaptan (R-SH, dengan R=gugus alkil), sulfida (R-S-R’), disulfida (R-S-S-R’) dan tiofen (sulfida siklik).
2.2. Nitrogen
Senyawa-senyawa nitrogen dibagi menjadi zat-zat yang bersifat basa seperti 3-metilpiridin (C6H7N) dan kuinolin (C9H7N) serta zat-zat yang tidak bersifat basa seperti pirol (C4H5N), indol (C8H7N) dan karbazol (C12H9N).
2.3. Oksigen
Oksigen biasanya terikat dalam gugus karboksilat dalam asam-asam naftenat (2,2,6-trimetilsikloheksankarboksilat, C10H18O2) dan asam-asam lemak (alkanoat), gugus hidroksi fenolik dan gugus keton.
 3. Senyawa logam
Minyak bumi biasanya mengandung 0,001-0,05% berat logam. Kandungan logam yang biasanya paling tinggi adalah vanadium, nikel dan natrium.

G.    Produk-produk Utama yang Bisa Diperoleh
 1. Gas-gas hidrokarbon ringan
Komponen-komponennya adalah senyawa-senyawa parafinik dengan titik didih normal < 30 oC dan pada tekanan atmosfer berwujud gas, yaitu metana (CH4), etana (C2H6), propana (C3H8), isobutana (i-C4H10) dan n-butana (n-C4H10). Gas-gas tersebut lazim disebut sebagai gas kilang.

2. Bensin (gasolin)
Mulanya bensin adalah produk utama dalam industri minyak bumi yang merupakan campuran kompleks dari ratusan hidrokarbon dan memiliki rentang pendidihan antara 30-200 oC.

3. Kerosin, bahan bakar pesawat jet, dan minyak diesel
Ketiga kelompok ini memiliki rentang pendidihan yang mirip. Kerosin disebut juga dengan minyak tanah dan digunakan sebagai bahan bakar rumah tangga. Rentang pendidihannya antara 175-275 oC.

4. Minyak bakar
Minyak bakar terbagi atas lima jenis, yaitu minyak bakar no. 1, no. 2, no. 4, no. 5 dan no. 6. Minyak bakar no. 1 sangat mirip kerosin tetapi memiliki titik tuang dan titik akhir rentang pendidihan yang lebih tinggi. Minyak bakar no. 2 (IDO=Industrial Diesel Oil) sangat mirip dengan minyak diesel otomotif. Minyak bakar no. 1 dan no. 2 serta kerosin, bahan bakar pesawat jet dan minyak diesel biasa disebut sebagai BBM distilat (distillate fuels). Minyak bakar no. 4, no. 5 dan no. 6 disebut BBM residu karena berasal dari sisa distilasi minyak bumi mentah pada tekanan atmosferik.

5. Produk-produk lain
Produk-produk lainnya seperti minyak pelumas, petroleum waxes (lilin), petroleum greases (gemuk), aspal dan kokas.






BAB III
PENUTUP
A.     KESIMPULAN
Senyawa hidrokarbon merupakan senyawa karbon yang paling sederhana. Dari namanya, senyawa hidrokarbon adalah senyawa karbon yang hanya tersusun dari atom hidrogen dan atom karbon. Dalam kehidupan sehari-hari banyak kita temui senyawa hidrokarbon, misalnya minyak tanah, bensin, gas alam, plastik dan lain-lain.
Sampai saat ini telah dikenal lebih dari 2 juta senyawa hidrokarbon. Untuk mempermudah mempelajari senyawa hidrokarbon yang begitu banyak, para ahli mengolongkan hidrokarbon berdasarkan susunan atom-atom karbon dalam molekulnya.
Hidrokarbon pada kehidupan sehari-hari sangatlah penting dan memiliki kegunaan yang tidak dapat digantkan oleh senyawa lain dalam penggunaan sehari-hari dalam bidang sandang, pangan serta papan. Dalam penggunaannya pun memiliki peran tersendiri dalam kegunaannya sehari-hari.

B.    SARAN
Dari pembelajaran materi ini, diharapkan kita bisa mengerti tentang reaksi senyawa hidrokarbon. Jadi, belajar itu tidak hanya dari satu buku tetapi dari buku lain kita juga bisa, karena buku adalah ilmu pengetahuan untuk kita. Keraguan bukanlah lawan keyakinan, keraguan adalah sebuah elemen dari kegagalan. Dan kita tidak harus takut pada kegagalan. tetapi pada keberhasilan melakukan sesuatu yang tidak berarti.







DAFTAR PUSTAKA


Anshory, Irvan. 2003. Kimia SMU untuk kelas 3. Erlangga. Jakarta
Ciptadi. 1999. Penuntun  Praktikum Kimia Organik. Palangkaraya: UNPAR
Fessenden & Fessenden. 1999. Kimia Organik Edisi Ketiga. Erlangga. Jakarta
Hart, Harold. 1999. Kimia Organik Suatu Kuliah Singkat. Erlangga. Jakarta

0 comments:

Post a Comment